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Further solutions of critical ABF RSOS models 
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Department of Mathematics, The Australian National University Canberra, ACT 0200. Australia$ 

Received 27 April 1995 

Abstract, The restricted SOS model of Andrews. Baxter and Forrester has been studied. The 
finite size corrections lo he eigenvalue spectra of the transfer matrix of the model with a more 
general crossing parameter have been calculated. Therefore the conformal weights and the 
central charges of the non-unitary 01 unitary minimal conformal field have been extracted from 
the finite sire c o d o n s .  

1. Introduction 

The ABF restricted solid-on-solid (RSOS) model was found by Andrews, Baxter and Forrester 
(ABF) in 1984 [l]. It is well known that the model provides realizations of unitary minimal 
conformal field theories [2-4]. This has been further confirmed by studying the finite-size 
corrections to the ground-state energy [5-111 (see also [12-22] for related works). Among 
these works, much effort has been focused on the ABF model corresponding to the unitary 
minimal conformal field theories. In contrast, the finite-size corrections to the transfer 
matrix of the ABF model corresponding to non-unitary minimal conformal field theories 
have received no attention. 

The local height probabilities of the ABF model with a crossing parameter h = k n j  h ,  
where two relatively prime positive integers satisfy k < h ,  have been calculated in [23]. In 
this paper, with the same motivation, we repeat the consideration of the finitesize correction 
calculation of the ABF model with h = ' k i r f h .  In general the model will no longer be 
physical, as there will be some negative face weights. Nevertheless, the non-unitary minimal 
conformal field theories 141 can be realized as the critical continuum of the ABF RSOS model 
with the crossing parameter h = k n  f h.  The model is therefore of independent interest for 
this feature. 

In [ZO] an analytic method has been presented to find the finite-size corrections involving 
the central charges for the six-vertex model with a twisted boundary condition. The method 
has been successfully applied to the other models (see [27], for example). In these works 
only the central charges have.been obtained. In fact the central charge and conformal 
weights together could appear in the finite-size corrections to the eigenvalue spectra of 
the transfer matrix. In this paper. following the calculation presented in [ZO], we find 
the finite-size corrections to the eigenvalue spectra of transfer matrices of the critical ABF 
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RSOS model. From the corrections both the central charges and the conformal weights of 
non-unitary minimal conformal field theories are extracted. This generalizes the method 
presented in [ZO] to find the conformal weights of the ABF SOS model. 

We first briefly review the ABF Rsos model and the Bethe ansatz solutions of transfer 
matrices in subsection 1.1. In section 2 we find an integral nonlinear equation and express 
the finite-size corrections in terms of the solution of the nonlinear equation. Then the 
effective central charges including the conformal weights are extracted from the finite-size 
corrections. A brief discussion is presented in section 3. 

1.1. Models and Bethe ansatz solutions 

The ABF RSOS model can be given by Baxter’s SOS model, which was introduced in order 
to solve the eight-vertex model with the R-matrix 

/ a ( u )  0 0 m\ 
0 b(u) c ( u )  0 I 0 c(u) b(u) 0 

R(u) = 

\d(u)  0 0 a ( u ) /  
where 

a@) = O(A)O(u)H(u + A )  
C ( U )  = H(A)O(u)O(u + A )  

The R-matrix satisfies the Yang-Baxter equation 124,251 

b(u)  = O(A)H(u)O(u + A )  
d(u)  = H(A)H(u)H(u  + A ) .  (1.2) 

R12(u)R13(u + u)RZ3(u)= RZ3(~)R”(u + u)R’*(u). (1.3) 
Baxter has shown in [25] that the eight-vertex model can be transferred into the SOS model, 
which is defined by the following face weights: 

h(u + A )  w(e i 1, e i 2, e i  1, t lu )  = 

where the height t E Z and 
and the spectral parameter is U. The function h(u) is given by 

The face weights satisfy the following Yang-Baxter equation: 

is an independent parameter. The crossing parameter is b 

h(u) = O(O)H(u)O(u).  (1.5) 

W(a,  b, g, f lu)W(f,g,  d ,  elv)W(g, b, c,dlv-u) 
E 

= W ( f .  a, g, elu-u)W(a, b, c. glu)W(g, c, d ,  e l 4  (1.6) 

for any integers a, b, c, d,  e, f .  Therefore the SOS model is an integrable system. Suppose 
that Z and m are allowed spin configurations of two consecutive rows of an N (even) 
column lattice with periodic boundary conditions ~ N + I  = I I ,  “+I = m l .  The elements of 
the row-to-row transfer matrix T of the SOS model are defined by 

f i  



Further solutions of critical ABF RSOS models 4341 

We recall the eigenvalues of the transfer matrix T given in [25] (see also [26] for the 
algebraic Bethe ansatz): 

where q(u )  is defined by 
NIZ 

j= l  
q(u) = n h ( u  - u j )  . 

These parameters U), u2, . . . , U N ~  are determined by the Bethe ansatz equations 

p ( u j )  = -1 j = 1,2, .  . . , N / 2  (1.10) 
where the function is given by 

2 i r A h N ( ~  - $A)q(u + A )  
hN(U + iA)q(u - A) 

p ( u )  := e- 

The ABF RSOS model is specialized by setting 
A = k n j h  and ( = O  (1.12) 

where k and h are relatively prime integers (h z k z 0) and s = 1,2, . . . , h - 1. With this 
condition (1.12) the face weights still satisfy the Yang-Baxter equation. The row-to-row 
transfer matrix T(u) forms the commuting family 

[T(u) I T(u) ] = 0. (1.13) 
Therefore the model is integrable. The Bethe ansatz solutions (1.8) and (1.10) with the 
restriction (1.12) are the eigenvalues and the Bethe ansatz equations of the transfer matrix 
of the RSOS model [7,8]. 

2. Finite-size corrections 

We consider the corresponding critical ABF RSOS model, which can be obtained by taking the 
zero elliptic nome p = 0. The elliptic function h(u)  reduces to the trigonometric function 

h(u)  = sin(u) (2.1) 
if p --f 0. The eigenvalues (1.8) and the Bethe ansatz equations (1.10) are still correct for 
the critical RSOS model if the function h(u) is replaced with (2.1). 

Let us introduce the new spectral variable U = iu. It is very helpful to note that the 
eigenvalue spectra (1.8) and the Bethe ansatz equations (1.10) are the same as those of 
the transfer matrix of the six-vertex model with a twisted boundary condition [20]. They 
therefore can be treated similarly. The functions have to be~restricted in some analyticity 
domain since all functions are irr-periodic. It has been shown in [20] that the following 
functions are analytic and non-zero (ANZ) 

h(u) ANZ 0 < h ( u )  c n 

and, the functions q and p respectively satisfy 

?(U) = q ( F )  and B(u) = l/p(u). (2.3) 
It is because of the in-periodic functions of face weights that we can take k < h/2. Note 
that~(2.2) has restricted the model to stay on the critical line of regime III/IV. 
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2.1. Nonlinear inregrul equation 

Following [ZO], let US introduce new functions 

a(x) := I / p ( x  -iA/2) = [ t anhz ]Nu(x )  
2k (2.4) 

d(x)  := l + a ( x )  

The variable x may be regarded as realt. The method presented in [20] is to derive a set of 
relations about functions U and q and these relations lead to a nonlinear integral equation, in 
turn, the nonlinear integral equation ensures that the finite-size corrections to the eigenvalue 
spectra of the transfer matrix can be solved through dilogarithmic functions. 

The functions involved are ANZ in the strips (2.2) and are exponentials in asymptotic 
behaviour. The second logarithmic derivatives of the functions can be Fourier transformed, 

I W  
f ( k )  = - /” [In f ( ~ ) ] ” e - ’ ~  dx 

2 H  -m 
W 

[In f ( x ) ] ”  = 1, f ( k )  eikX d k  

where the integration path in the x-plane has to lie in the analyticity strip and the real part 
of the variable of integration goes from -CO to W. By Cauchy’s theorem all other details 
of the path are irrelevant for f ( k ) .  

We now derive a set of relations about functions a and q. Applying the Fourier transform 
to the definition (2.4) of a(x) 

(2.6) 
H X  hN(x)q (x  - 3iA/2) 

a(x)  = [coth 
h N ( x  - iA + in)q(x + iA/2 - in) 

where all arguments of the functions q and h have been reduced to the analyticity strips 
(2.2) because of the Hi-periodicity, then yields 

To solve a and q we need another relation, which is introduced by an auxiliary function 

It is AE in the strip -A/2 < Im(v) < A/2. To apply Cauchy’s theorem to the Fourier 
transform of the second logarithmic derivative of h,, we rewrite h,(v) in the following two 
different forms such that the arguments of q stands in the analyticity strip (2.2) 

ITX N -4x) h,(x - iA/2) = [coth 

h,(x + iA/2) = 

- A q(x  - iA/2) a(x) 

q ( x  + iA/2 - in) ‘ 
Applying the Fourier transform to (2.9); it follows that 

q ( k )  . e-W2 ha@) = x ( k )  - e(n-W)k 

7 Sometimes it is wnvenient to work with values of x in the upper half-plane close to the real axis for avoiding 
singularitis which might othewise occur, 
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Then they are equated, yielding 

Equations (2.7) and (2.10) together determine the functions a(k) and q(k): 
sinh(47rk - Ak) 

Zcosh(4Ak) sinh f(nk - hk) 
a(k) = (A&) - e(A-e)kx(k)) 

(211 1) Nke-Zk12 e-(n+A)k/2 
- (d(k) - eAkx(k)) 

q(k) = 4sinh($rk)cosh(iAk) 4cosh(ihk)sinhf(nk - Ak) 
where an infinitesimal positive 6 has been introduced for the imaginary part of the argument 
of x .  Transforming back to the variable x 

CO 

[Ina(x)]" = lw (K(y)[lnA]"(x - y) - K(y + ie - ih)[lnx]"(x - y)) dy (2.12) 

where the kernel function 
sinb(i7r - h)k ._ K ( x )  := - e" dk 

2cosh(~Ak)sinh$(n~- h)k 
(2.13) 

satisfies - 
K ( x )  = K(-Y) K ( x )  = K(-x). (2.14) 

Equation (2.12) is derived based on the essential ANZ property of the Bethe ansae solution 
(1.8). Low-lying excitations have the same bulk behaviour as the ground state. The only 
difference has been shown [9] to lie in the fact that the eigenvalue functions now possess a 
finite number of zeros in the analyticity strip, which were free~of zeros in  the ground state. 
However, it is always possible~to take an ANZ area in the analyticity strip where Cauchy's 
theorem can be applied [ I l l .  Therefore equation (2.12) still works for the excited states 
if we change the integration path in the ANZ area. Integrating (2.12) twice we obtain a 
nonlinear integral equation 

In&) = 
m 

(K(y) Ind(x - y) - K(y + is - ih) Inx(x - y)) dy + C + Dx s, 
(2.15) 

where theintegral constant D = 0 because all terms remain finite for x + 00, and another 
integral constant C is heavily dependent on the branch choice of In&), 

W 

C = Ina(co) - K ( y )  dy (Ind(co) - Inx(oo)) L 
L7r - A  

= ln(wzezsA) - 2 (In(l+w2e7",") - In(1 +'w-Ze-zsA)) 
7 r - A  

(2.16) 

where the phase factor c$ has been introduced by 

+ = s h - i I n w  @ ' = I .  (2.17) 
Here we have taken a more general choice of branches for Ina(x),  or Inu(w) = 21n(wei"A)). 
The case w = 1 has been studied in [ZO], which corresponds to the ground state. For the 
excited states we have chosen the other branches with w # 1 or take 

(2.18) = 
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with the integers s, t. From the definition (2.4) it follows that a goes to a e-4ish under the 
changes + h -s. So the same symmetry should be imposed on the equation (2.15), or the 
phase factor $ must go to -4 under this change. It follows that the phase factor $ will go 
to -$ if changing s + h - s and t -+ h - k - t .  Similar to the exponents, suppose that 
t is positive. According to s = 1,2, . . . , h - 1 we therefore take t = 1,2, . . . , h - k - 1. 
Recalling the definition (2.4) we arrived at the nonlinear integral equation for OL 

nx in$ 
lntu(x) =Nlntanh-+- 

2b n-A 
m + /, ( K ( y )  In A ( x  - y) - K ( y  +is  - ih) Inx(x - y)) dy , (2.19) 

This equation i s  exact for all finite system size and for both the ground state and the excited 
states. 

2.2. Scaling limits 

To obtain the finite-size corrections to the eigenvalue spectra of the transfer matrix we 
observe the following scaling behaviour 

(2.20) 

in thermodynamic limit N --f CO. The function OL scales similarly: 

a*(x) := lim OL &-(x + InN) &(x) :=ha&)  (2.21) 

(2.22) 

N-m ( 
A&) := lim A k-(x +In  N )  = 1 + ~ ( x )  U&) := lnA&). 

N-km ( 
In the scaling-limit regimes the nonlinear integral equation (2.19) becomes 

m ' m  
la&) = -2e-= + K I  (x  - y)U+(y) du - 1 K2(x - y)&(y) du 

-m 
in$ 
I- 

in@ 
n - A  

-- 

where K ] . ~ ( X )  are defined by 

A KI ( x )  := - K ( ; x )  
x 

(2.24) 

Let us now turn to the eigenvalues T given by (1.8). Its finite-size corrections can be 
derived from 

q ( x  + ib/2 - in) 
q ( x  - ih/2) 

T ( x  - ih/2) = h N ( x  - iA) A(x)e"'" (2.25) 
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Applying the Fourier transform to the ratio of the q-functions and taking (2.11) into account, 
we have 

In 
q(x + ih/2 - in) 

q(x - iA/2) 

sinh i(n - A)k 
= - N \  eiXX dy -- 2ksinhi(nk)cosh f(hk) 

dY + f c  (2.26) ’ CO InA(x - y )  +’\ 2h -m sinh p(y - is) 
where fc is an integration constant. Therefore the finite-size corrections to the eigenvalue 
can be expressed as 

sinh i (n  - A)ksinh(xk) s -m u(sinhi(nk)coshf(hk) 
dk InT(x-ih/Z)= f ,+Nlnh(x - ih ) -N  

(2.27) 

The scaling limit of the corrections can be done by splitting the integral into two parts, then 
replacing the variable of integration y by 1 $ ( y  + In N) and using the scaling functions 
(2.22), we obtain 

m 2i 
In T(x  - iA/2) = -Nf ( x  - iA/2) - -ePX RelA+(y)e-Y dy 

XN lm 

where the bulk behaviour is entirely expressed by the first term, and the second term 
expresses the finite-size corrections. The integration constant fc is chosen so that f (x-ih/Z) 
is exactly the bulk energy, which can be derived from the inversion relation of the face 
weights 17,231. Here we are only interested in the finite-size correction terms which include 
the conformal spectra. 

2.3. Conformal spectra 

The conformal spectra can be extracted from the finitesize corrections of the transfer matrix. 
The integral in the finite-size correction term in (2.28) can be calculated by considering the 
expression 

m 

([kz+(x)l’lA*(x) - la+(x)[lA*tcx)l’) 

(2.29) 
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The right-hand side is derived by using the nonlinear integral equation (2.23). The left-hand 
side can be calculated after changing the variable x to a and zi and using the dilogarithmic 
function 

(2.30) 

Then we are able to derive the expression 

(2.31) 
H - A  

L (mZeasA) + L (m-2e-zisA) - 24 

2 -  
where the asymptotics of a+(w) = , a+(w) = and Q*(-w) = 
zi+(-co) = 0 have been read off from (2.23). Finally, using the well known identity 

(2.32) 
n2 

3 L ( z )  + L ( l / z )  = - = 

the finite-size corrections in (2.28) are given by the explicit expression 

In T ( x  - iAj2) = -Nf (x  - iAj2) - 6N 
or, changing the variable x to U = iu = x - iA/2, by 

where the central charge is 

6AZ 
n(n -A)  

and the conformal weights are 

c = l -  

42 - A2 
A =  

4H(H - A) ’ 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

For the ground state, s = t = 1 yields A = 0. The choice of 1 c s < h - 1 and 
1 c t < h - k - 1 gives the excited states. Remarkably, on inserting A given by (1.12) in 
the conformal spectra we have the cenfral charges and the conformal weights of the primary 
fields for Viasoro minimal models 

[ht - (h - k ) ~ ] ’  - kZ 
and A =  

6kZ 
h(h - k)  

c = l -  
4h(h - k )  

k < h  s = l , 2  ,..., h - 1  t = l , 2  ,..., h - k - 1  
(2.37) 

for k 1. The unitary minimal models are given by taking k = 1. 

3. Discussion 

In this paper we have obtained the conformal spectra of the non-unitary minimal conformal 
field theories from the finitesize corrections to the eigenvalue spectra of the transfer matrix 
of the critical ABF model on the regime IIVIV critical line with the crossing parameter (1.12). 
The method given in [20] is only for calculating the central charges for the six-vertex model 
with a twisted boundary condition. In this paper it has been generalized to calculate both the 
central charges and the conformal weights. Other methods, for example, the thermodynamic 
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Bethe ansatz (TBA) analysis (see )[8,28-35], exist for calculating the conformal spectra. The I 

“BA relies heavily on the string hypothesis, while our method crucially depends on the ANZ 
property instead. However. it is an interesting problem to generalize the TBA method for 
calculating the conformal weights of the ABF SOS model. 

There is another method for calculating the finite-size corrections of transfer matrices. 
This has been shown by solving the fusion hierarchies of the ABF model. Unfortunately it 
is~only for k = 1 [ l l ]  (also see [21]). How to find finite-size corrections of the transfer 
matrix of the ABF model for k > 1 is not yet known. 
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